The Effects of Salinity, pH, and Dissolved Oxygen on the Sensitivity of PCR Identification of the T4 Bacteriophage in Estuarine Water

Joseph Cannon Nick Thurn Coastal Carolina University

Bacteriophages

- Bacteriophages are host specific viruses that infect bacteria.
- Escherichia coli is a common bacterium that is found in fecal contaminated water.
- The T4 bacteriophage has been shown to infect, replicate within and subsequently lyse *E. coli,* spreading new virus particles into the environment.

Bacteriophages as Indicators

While an excellent bacterial pollution indicator in *drinking and waste water settings*, little is known about:

- the survival and persistence of bacteriophages in natural freshwater and saline settings.
- bacteriophage survival and persistence in high flux waterways

Bacteriophages as Therapy

- Bacteriophages have potential in *limiting aquatic bacteria through their lytic* properties.
- Phage therapy has potential for use to control disease in aquaculture systems.

Bacteriophages as Therapy

Advantages

- self-replication;
- *increased* concentrations as infection *persists*;
- highly selective to host, which prevents harm to beneficial, naturally occurring microflora.
- evolve faster than bacteria (not static)

Bacteriophages as Therapy

Disadvantages

- Phages are sensitive to temperature, chemical treatments and salinity.
- Coliphage occurrence may be significantly different between freshwater, estuarine and coastal locations

Long Term Research Plan

- Isolate and quantify local bacteriophages using the "PCR"
- *Identify* local bacteriophages by genetic fingerprinting
- Build a catalogue of local bacteriophages
- *Test feasibility of phage therapy* in local bacterial blooms.

PCR Identification

We have developed (PCR) protocol for identifying the presence of T4 bacteriophage in water samples.

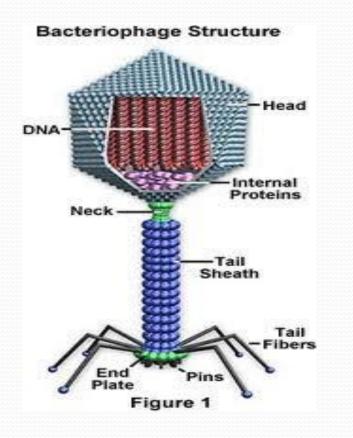
Targets two genes in the T4 genome:

- Open Reading Frame 23, (OFR 23) which encodes for a major capsid protein
- Open Reading Frame 43, (OFR 43) which encodes for the T4 DNA polymerase.

Sensitive to detect 5 virus particles (230 viruses per milliliter of sample)

Sampling Sites

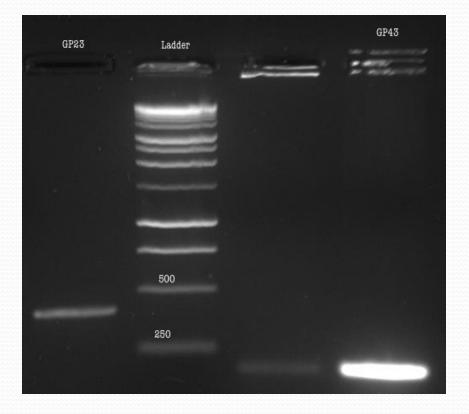
Waccamaw River (High Flux)


- Reaves Ferry
- Conway Waterfront
- Hagley Landing
- Wachesaw Landing

Waccamaw River backwater (Low Flux)

- Sterritt Swamp
- Conway Waterfront Swamp
- North Inlet (Tidal)
- Debidue Creek,
- Crabhaul Pocket Ponds
- Bart's Bridge

DNA Extraction


- 70 uL of sample and 7 uL of proteinase K were added to a micro centrifuge tube and were incubated at room temperature for 45 minutes on an orbital shaker to expose T4 DNA.
- Samples were exposed to a constant temperature of 96.1°C for 10 minutes in a hot block to inactivate proteinase K and any remaining phage samples.

PCR Amplification and Testing

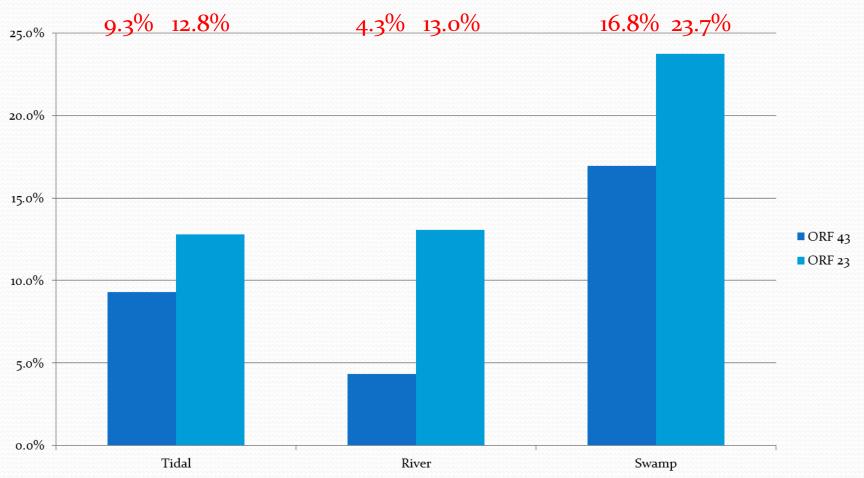
- In a large PCR tube, 25uL of GoTaq Hot start master mix, 2uL of each L primer (23L and 43L), 2uL of each R primer (23R and 43R) and 21uL of sample DNA were combined.
- The genetic material was amplified using the T4 program on a Biorad personal thermocycler.
- After amplification, the samples were run out on a 1% agarose gel stained with ethidium bromide at 100 volts for 1 hour. The gel was imaged using a 100 base pair ladder as reference.

T4 Positive result

GP23, a major capsid protein of 403 base pairs; GP43, the core DNA polymerase of T4 replisome consisting of 198 base pairs

Results

Overall Identification


Site	# of Samples	# of ORF 23 Detected	# of ORF 43 Detected	% ORF 23 Detected	% ORF 43 Detected	Flux Rate
Hobcaw A	48	4	6	8.33%	12.50%	Tidal
Hobcaw B	32	4	5	12.50%	15.63%	Tidal
Hobcaw C	6	0	0	0.00%	0.00%	Tidal
Lower River	6	0	0	0.00%	0.00%	High
Reeve's Landing	24	1	3	4.17%	12.50%	High
Conway Waterfront	16	1	3	6.25%	18.75%	High
Conway River Swamp	33	7	10	21.21%	30.30%	Low
Sterrit Swamp	26	3	4	11.54%	15.38%	Low

ORF 23 10.5%

ORF 43 16.2%

N=191

Positive Identification

Flow

River – significant difference in positive identification $(F_{44,57} = 0.601, P > 0.05)$ between:

- Low Flux environment-backwater swamp and primary embanked streamlet (20.68%)
- High flux tertiary stream sites (11.11%)

Estuarine tidal marsh (12.8%)

Semi-diurnal tidal flux is high.

This finding is indicative that natural flushing may inhibit the capacity of the bacteriophage to thrive.

Abiotic Factors

Variable	Positive Average	Negative Average	F-Test	Degrees Freedom	P-Value
рН	7.78	7.80	0.069605	(1,76)	0.793
Temperature (°C)	10.36	17.11	8.241235	(1,76)	0.005
Dissolved Oxygen (mg/L)	7.96	7.27	2.387397	(1,76)	0.127
Salinity (PSU)	33.91	34.51	1.578205	(1,76)	0.212

Temperature

Temperature showed a *significant inverse relationship* to the proportion of positive results.

- The lower the temperature, the higher occurrence of bacteriophage detection. (F_{1.76}=8.241, p<.005)
- Somewhat counterintuitive would expect more bacteria at higher temperatures

Dissolved Oxygen

No significant difference in the rate of bacteriophage detection for water and soil samples ($F_{1,76}$ =7.27, p>.127)

- However significant inverse relationship between water temperature and dissolved oxygen concentration (R² = 0.614, F_(1.59) = 93.9, P < 0.001)
- The lower the water temperature, the higher the dissolved oxygen concentration.
- May indicates that positive identification rates are associated with higher oxygen concentrations and not with lower water temperatures.

Precipitation

 24 Hour Rainfall data collected at Hobcaw Barony shows that

Variable	Positive Average	Negative Average	F-Test	Degrees Freedom	P-Value
24hr rainfall (mm/day)	11.757	2.629	6.02	(1,56)	0.017

- bacteriophage detection increases as precipitation increases (F1,56 = 6.02, P < 0.02)
- as expected from fecal contamination runoff.

Next Steps

Isolate local bacteriophages using the "PCR" technique

- Expand identification to cover seasonal variation
- Correlate Bacteriophage with Bacterial presence
 - Bacterial PCR
 - E-coli and coliform counts

Identify local bacteriophages by genetic fingerprinting Build a *catalogue* of local bacteriophages
Test feasibility of phage therapy in local bacterial blooms.

River Samples

	Bacterial Samples	Positive Phage Samples
High Coliform >300 cfu (43)	18	17
Low Coliform <300 cfu (43)	38	7
High <i>E coli</i> >100 cfu (23)	2	2
Low E coli <100 cfu (23)	54	13

Marsh Samples

	Bacterial Samples	Positive Phage Samples
High Coliform >300 cfu (43)	32	30
Low Coliform <300 cfu (43)	8	2
High <i>E coli</i> >100 cfu (23)	27	26
Low E coli <100 cfu (23)	13	4

Questions?

